Skip to main content

3 posts tagged with "Development Platform"

Development platform technologies and tools

View All Tags

Forward Deployed Engineers: The Bridge Between AI Innovation and Real-World Enterprise Solutions

· 5 min read

In today’s rapidly evolving tech landscape, the demand for engineers who can translate cutting-edge AI capabilities into scalable enterprise applications is soaring. This role has a name: Forward Deployed Engineer (FDE) — a hybrid professional who blends software craftsmanship with product strategy, operating at the intersection of innovation and execution.

What Is a Forward Deployed Engineer (FDE)?

Forward Deployed Engineer (FDE) is a software engineer who works closely with enterprise clients to customize, deploy, and scale complex AI or data-driven systems. Unlike traditional backend or product engineers, FDEs operate in the “field” — directly with customers — to adapt powerful platforms (like AI development systems or low-code frameworks) to specific business contexts.

The title originated at Palantir, a company renowned for embedding engineers within client teams to ensure successful software adoption. The concept has since spread across the AI and enterprise software ecosystem, especially among companies developing AI-powered automation and low-code development platforms.

What Is the Ultimate Vision of Low-Code/Visual Development?

· 4 min read

Traditional low-code/visual development platforms rely on black-box rule engines, fundamentally limiting application extensibility. They sacrifice expressive power for simplicity, inevitably failing in complex enterprise scenarios. True visual development shouldn't constrain capabilities—it should enable developers to orchestrate system modules and technical capabilities visually, transitioning from closed DSL (Domain Specific Language) engines to open orchestration protocols, from limited expression to unlimited integration.

What Is an AI Native Development Platform?

· 5 min read

Loading...

In today’s world, where everyone is embracing AI in software development, how much of your code do you write yourself? How much is generated by AI? In this evolving landscape, every software engineer will soon have to become an AI native developer.

But do we need to manually debug and adapt every AI-generated line of code—whether in embedded AI scenarios or vibe coding? Is there a development approach that can truly streamline this process? Perhaps an AI native development platform gives the answer.